Lecture 5#
Eigenvalues are orthonormal
\(\int\psi_{nlm}\psi_{n'l'm'}\)
\(\left\{\begin{align}n=n',l=l',m=m'\rightarrow =1\\=0\end{align}\right.\)
Spatial Spin
\(\left\{\begin{align}\alpha \,\text{for spin up}\\\beta\,\text{for spin down}\end{align}\right.\)
\(\int\alpha\alpha^\star=\int\beta\beta^\star=1\)
\(\int\alpha\beta=\int\alpha^\star\beta^\star=0\)
Variational method
Assume each \(\psi_i\) is larger than the ground state
Trail \(\psi=\sum_iC_i\psi_i\) (linear combination of eigenvectors)
\(\left\{\begin{align}E-\epsilon_0=\frac{\sum|C_i|^2(\epsilon-\epsilon_0)}{\sum|C_i|^2}\\\epsilon_i\ge\epsilon_0\\|C_i|^2\ge 0\end{align}\right.\)\(\longrightarrow\) \(E-\epsilon_0\ge 0\)
1. Multi-electron wavefunctions#
Two-electron wave function must be anti-symmetric
\hat{H} = -\frac{1}{2m}\sum_i^n\grad_1^2-\frac{1}{4\pi\epsilon_0}\sum_A\sum_i\frac{Z_Ae^2}{|r_{Ai}|}+\frac{1}{4\pi\epsilon_0}\sum_i\sum_j\frac{1}{2}\frac{1}{|r_{ij}|} $$