
Introduction
Selecting specific values of a pandas DataFrame or Series to work on is an implicit

step in almost any data operation you'll run, so one of the first things you need to

learn in working with data in Python is how to go about selecting the data points

relevant to you quickly and effectively.

To start the exercise for this topic, please click here.

Native accessors
Native Python objects provide good ways of indexing data. Pandas carries all of

these over, which helps make it easy to start with.

Consider this DataFrame:

In [1]: import pandas as pd
reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0)
pd.set_option('display.max_rows', 5)

In [2]: reviews

https://www.kaggle.com/kernels/fork/587910

In Python, we can access the property of an object by accessing it as an attribute. A

book object, for example, might have a title property, which we can access by

calling book.title . Columns in a pandas DataFrame work in much the same way.

Hence to access the country property of reviews we can use:

0 Italy
1 Portugal
 ...
129969 France
129970 France
Name: country, Length: 129971, dtype: object

If we have a Python dictionary, we can access its values using the indexing ([])

operator. We can do the same with columns in a DataFrame:

country description designation points price province region_1 region_2 taster_name

0 Italy

Aromas
include
tropical

fruit,
broom,

brimston...

Vulkà
Bianco

87 NaN
Sicily &

Sardinia
Etna NaN

Kerin
O’Keefe

1 Portugal

This is ripe
and fruity, a
wine that is

smooth...

Avidagos 87 15.0 Douro NaN NaN Roger Voss

...

129969 France

A dry style
of Pinot

Gris, this is
crisp with

...

NaN 90 32.0 Alsace Alsace NaN Roger Voss

129970 France

Big, rich
and off-dry,

this is
powered by

inte...

Lieu-dit
Harth Cuvée

Caroline
90 21.0 Alsace Alsace NaN Roger Voss

129971 rows × 13 columns

Out[2]:

In [3]: reviews.country

Out[3]:

In [4]: reviews['country']

0 Italy
1 Portugal
 ...
129969 France
129970 France
Name: country, Length: 129971, dtype: object

These are the two ways of selecting a specific Series out of a DataFrame. Neither of

them is more or less syntactically valid than the other, but the indexing operator []
does have the advantage that it can handle column names with reserved characters

in them (e.g. if we had a country providence column, reviews.country
providence wouldn't work).

Doesn't a pandas Series look kind of like a fancy dictionary? It pretty much is, so it's

no surprise that, to drill down to a single specific value, we need only use the

indexing operator [] once more:

'Italy'

Indexing in pandas
The indexing operator and attribute selection are nice because they work just like

they do in the rest of the Python ecosystem. As a novice, this makes them easy to

pick up and use. However, pandas has its own accessor operators, loc and iloc .

For more advanced operations, these are the ones you're supposed to be using.

Index-based selection

Pandas indexing works in one of two paradigms. The first is index-based selection:

selecting data based on its numerical position in the data. iloc follows this

paradigm.

To select the first row of data in a DataFrame, we may use the following:

country Italy
description Aromas include tropical fruit, broom, brimston...
 ...
variety White Blend
winery Nicosia
Name: 0, Length: 13, dtype: object

Both loc and iloc are row-first, column-second. This is the opposite of what we

do in native Python, which is column-first, row-second.

This means that it's marginally easier to retrieve rows, and marginally harder to get

retrieve columns. To get a column with iloc , we can do the following:

Out[4]:

In [5]: reviews['country'][0]

Out[5]:

In [6]: reviews.iloc[0]

Out[6]:

0 Italy
1 Portugal
 ...
129969 France
129970 France
Name: country, Length: 129971, dtype: object

On its own, the : operator, which also comes from native Python, means

"everything". When combined with other selectors, however, it can be used to

indicate a range of values. For example, to select the country column from just the

first, second, and third row, we would do:

0 Italy
1 Portugal
2 US
Name: country, dtype: object

Or, to select just the second and third entries, we would do:

1 Portugal
2 US
Name: country, dtype: object

It's also possible to pass a list:

0 Italy
1 Portugal
2 US
Name: country, dtype: object

Finally, it's worth knowing that negative numbers can be used in selection. This will

start counting forwards from the end of the values. So for example here are the last

five elements of the dataset.

In [7]: reviews.iloc[:, 0]

Out[7]:

In [8]: reviews.iloc[:3, 0]

Out[8]:

In [9]: reviews.iloc[1:3, 0]

Out[9]:

In [10]: reviews.iloc[[0, 1, 2], 0]

Out[10]:

In [11]: reviews.iloc[-5:]

Label-based selection

The second paradigm for attribute selection is the one followed by the loc
operator: label-based selection. In this paradigm, it's the data index value, not its

position, which matters.

For example, to get the first entry in reviews , we would now do the following:

'Italy'

iloc is conceptually simpler than loc because it ignores the dataset's indices.

When we use iloc we treat the dataset like a big matrix (a list of lists), one that we

have to index into by position. loc , by contrast, uses the information in the indices

to do its work. Since your dataset usually has meaningful indices, it's usually easier

to do things using loc instead. For example, here's one operation that's much

easier using loc :

country description designation points price province region_1 region_2

129966 Germany

Notes of
honeysuckle

and
cantaloupe

sweeten
th...

Brauneberger
Juffer-

Sonnenuhr
Spätlese

90 28.0 Mosel NaN NaN

129967 US

Citation is
given as

much as a
decade of

bottl...

NaN 90 75.0 Oregon Oregon
Oregon

Other

129968 France

Well-
drained

gravel soil
gives this

wine its c...

Kritt 90 30.0 Alsace Alsace NaN

129969 France

A dry style
of Pinot

Gris, this is
crisp with ...

NaN 90 32.0 Alsace Alsace NaN

129970 France

Big, rich
and off-dry,

this is
powered by

inte...

Lieu-dit
Harth Cuvée

Caroline
90 21.0 Alsace Alsace NaN

Out[11]:

In [12]: reviews.loc[0, 'country']

Out[12]:

In [13]: reviews.loc[:, ['taster_name', 'taster_twitter_handle', 'points']]

taster_name taster_twitter_handle points

0 Kerin O’Keefe @kerinokeefe 87

1 Roger Voss @vossroger 87

...

129969 Roger Voss @vossroger 90

129970 Roger Voss @vossroger 90

129971 rows × 3 columns

Choosing between loc and iloc

When choosing or transitioning between loc and iloc , there is one "gotcha"

worth keeping in mind, which is that the two methods use slightly different indexing

schemes.

iloc uses the Python stdlib indexing scheme, where the first element of the range

is included and the last one excluded. So 0:10 will select entries 0,...,9 . loc ,

meanwhile, indexes inclusively. So 0:10 will select entries 0,...,10 .

Why the change? Remember that loc can index any stdlib type: strings, for example.

If we have a DataFrame with index values Apples, ..., Potatoes, ... , and

we want to select "all the alphabetical fruit choices between Apples and Potatoes",

then it's a lot more convenient to index df.loc['Apples':'Potatoes'] than it is

to index something like df.loc['Apples', 'Potatoet'] (t coming after s in

the alphabet).

This is particularly confusing when the DataFrame index is a simple numerical list,

e.g. 0,...,1000 . In this case df.iloc[0:1000] will return 1000 entries, while

df.loc[0:1000] return 1001 of them! To get 1000 elements using loc , you will

need to go one lower and ask for df.loc[0:999] .

Otherwise, the semantics of using loc are the same as those for iloc .

Manipulating the index
Label-based selection derives its power from the labels in the index. Critically, the

index we use is not immutable. We can manipulate the index in any way we see fit.

The set_index() method can be used to do the job. Here is what happens when

we set_index to the title field:

Out[13]:

In [14]: reviews.set_index("title")

This is useful if you can come up with an index for the dataset which is better than

the current one.

Conditional selection
So far we've been indexing various strides of data, using structural properties of the

DataFrame itself. To do interesting things with the data, however, we often need to

ask questions based on conditions.

For example, suppose that we're interested specifically in better-than-average wines

produced in Italy.

We can start by checking if each wine is Italian or not:

0 True
1 False
 ...
129969 False
129970 False
Name: country, Length: 129971, dtype: bool

country description designation points price province region_1 region_2

title

Nicosia 2013
Vulkà Bianco

(Etna)
Italy

Aromas
include
tropical

fruit,
broom,

brimston...

Vulkà
Bianco

87 NaN
Sicily &

Sardinia
Etna NaN

Quinta dos
Avidagos 2011
Avidagos Red

(Douro)

Portugal

This is ripe
and fruity, a
wine that is

smooth...

Avidagos 87 15.0 Douro NaN NaN

...

Domaine Marcel
Deiss 2012

Pinot Gris
(Alsace)

France

A dry style
of Pinot

Gris, this is
crisp with

...

NaN 90 32.0 Alsace Alsace NaN

Domaine
Schoffit 2012

Lieu-dit Harth
Cuvée Caroline

Gewurztraminer
(Alsace)

France

Big, rich
and off-dry,

this is
powered by

inte...

Lieu-dit
Harth Cuvée

Caroline
90 21.0 Alsace Alsace NaN

129971 rows × 12 columns

Out[14]:

In [15]: reviews.country == 'Italy'

Out[15]:

This operation produced a Series of True / False booleans based on the

country of each record. This result can then be used inside of loc to select the

relevant data:

This DataFrame has ~20,000 rows. The original had ~130,000. That means that

around 15% of wines originate from Italy.

We also wanted to know which ones are better than average. Wines are reviewed on

a 80-to-100 point scale, so this could mean wines that accrued at least 90 points.

We can use the ampersand (&) to bring the two questions together:

country description designation points price province region_1 region_2 taster_name

0 Italy

Aromas
include
tropical

fruit,
broom,

brimston...

Vulkà
Bianco

87 NaN
Sicily &

Sardinia
Etna NaN

Kerin
O’Keefe

6 Italy

Here's a
bright,

informal red
that opens

with ...

Belsito 87 16.0
Sicily &

Sardinia
Vittoria NaN

Kerin
O’Keefe

...

129961 Italy

Intense
aromas of

wild cherry,
baking

spice, t...

NaN 90 30.0
Sicily &

Sardinia
Sicilia NaN

Kerin
O’Keefe

129962 Italy

Blackberry,
cassis,

grilled herb
and toasted

a...

Sàgana
Tenuta San

Giacomo
90 40.0

Sicily &
Sardinia

Sicilia NaN
Kerin

O’Keefe

19540 rows × 13 columns

In [16]: reviews.loc[reviews.country == 'Italy']

Out[16]:

In [17]: reviews.loc[(reviews.country == 'Italy') & (reviews.points >= 90)]

Suppose we'll buy any wine that's made in Italy or which is rated above average. For

this we use a pipe (|):

country description designation points price province region_1 region_2 taster_name

120 Italy

Slightly
backward,

particularly
given the

vint...

Bricco
Rocche

Prapó
92 70.0 Piedmont Barolo NaN NaN

130 Italy

At the first
it was quite
muted and

subdued,
b...

Bricco
Rocche
Brunate

91 70.0 Piedmont Barolo NaN NaN

...

129961 Italy

Intense
aromas of

wild cherry,
baking

spice, t...

NaN 90 30.0
Sicily &

Sardinia
Sicilia NaN

Kerin
O’Keefe

129962 Italy

Blackberry,
cassis,

grilled herb
and toasted

a...

Sàgana
Tenuta San

Giacomo
90 40.0

Sicily &
Sardinia

Sicilia NaN
Kerin

O’Keefe

6648 rows × 13 columns

Out[17]:

In [18]: reviews.loc[(reviews.country == 'Italy') | (reviews.points >= 90)]

Pandas comes with a few built-in conditional selectors, two of which we will highlight

here.

The first is isin . isin is lets you select data whose value "is in" a list of values.

For example, here's how we can use it to select wines only from Italy or France:

country description designation points price province region_1 region_2 taster_name

0 Italy

Aromas
include
tropical

fruit,
broom,

brimston...

Vulkà
Bianco

87 NaN
Sicily &

Sardinia
Etna NaN

Kerin
O’Keefe

6 Italy

Here's a
bright,

informal red
that opens

with ...

Belsito 87 16.0
Sicily &

Sardinia
Vittoria NaN

Kerin
O’Keefe

...

129969 France

A dry style
of Pinot

Gris, this is
crisp with

...

NaN 90 32.0 Alsace Alsace NaN Roger Voss

129970 France

Big, rich
and off-dry,

this is
powered by

inte...

Lieu-dit
Harth Cuvée

Caroline
90 21.0 Alsace Alsace NaN Roger Voss

61937 rows × 13 columns

Out[18]:

In [19]: reviews.loc[reviews.country.isin(['Italy', 'France'])]

The second is isnull (and its companion notnull). These methods let you

highlight values which are (or are not) empty (NaN). For example, to filter out wines

lacking a price tag in the dataset, here's what we would do:

country description designation points price province region_1 region_2 taster_name

0 Italy

Aromas
include
tropical

fruit,
broom,

brimston...

Vulkà
Bianco

87 NaN
Sicily &

Sardinia
Etna NaN

Kerin
O’Keefe

6 Italy

Here's a
bright,

informal red
that opens

with ...

Belsito 87 16.0
Sicily &

Sardinia
Vittoria NaN

Kerin
O’Keefe

...

129969 France

A dry style
of Pinot

Gris, this is
crisp with

...

NaN 90 32.0 Alsace Alsace NaN Roger Voss

129970 France

Big, rich
and off-dry,

this is
powered by

inte...

Lieu-dit
Harth Cuvée

Caroline
90 21.0 Alsace Alsace NaN Roger Voss

41633 rows × 13 columns

Out[19]:

In [20]: reviews.loc[reviews.price.notnull()]

Assigning data
Going the other way, assigning data to a DataFrame is easy. You can assign either a

constant value:

0 everyone
1 everyone
 ...
129969 everyone
129970 everyone
Name: critic, Length: 129971, dtype: object

Or with an iterable of values:

0 129971
1 129970
 ...
129969 2
129970 1
Name: index_backwards, Length: 129971, dtype: int64

country description designation points price province region_1 region_2

1 Portugal

This is ripe
and fruity, a
wine that is

smooth...

Avidagos 87 15.0 Douro NaN NaN

2 US

Tart and
snappy, the

flavors of
lime flesh

and...

NaN 87 14.0 Oregon
Willamette

Valley
Willamette

Valley

...

129969 France

A dry style
of Pinot

Gris, this is
crisp with

...

NaN 90 32.0 Alsace Alsace NaN

129970 France

Big, rich
and off-dry,

this is
powered by

inte...

Lieu-dit
Harth Cuvée

Caroline
90 21.0 Alsace Alsace NaN

120975 rows × 13 columns

Out[20]:

In [21]: reviews['critic'] = 'everyone'
reviews['critic']

Out[21]:

In [22]: reviews['index_backwards'] = range(len(reviews), 0, -1)
reviews['index_backwards']

Out[22]:

Your turn
If you haven't started the exercise, you can get started here.

Have questions or comments? Visit the course discussion forum to chat with other
learners.

https://www.kaggle.com/kernels/fork/587910
https://www.kaggle.com/learn/pandas/discussion

