Introduction

Selecting specific values of a pandas DataFrame or Series to work on is an implicit
step in almost any data operation you'll run, so one of the first things you need to
learn in working with data in Python is how to go about selecting the data points
relevant to you quickly and effectively.

import pandas as pd
reviews = pd.read csv("../input/wine-reviews/winemag-data-130k-v2.csv", i
pd.set option('display.max rows', 5)

To start the exercise for this topic, please click here.

Native accessors

Native Python objects provide good ways of indexing data. Pandas carries all of
these over, which helps make it easy to start with.

Consider this DataFrame:

reviews


https://www.kaggle.com/kernels/fork/587910

129969

129970

country description

Aromas
include
tropical
fruit,
broom,
brimston...

Italy

This is ripe
and fruity, a
wine that is

smooth...

Portugal

A dry style
of Pinot
Gris, this is
crisp with

France

Big, rich
and off-dry,
thisis
powered by
inte...

France

129971 rows x 13 columns

designation points price
Vulka 87 NaN
Bianco
Avidagos 87 15.0
NaN 90 32.0
Lieu-dit
Harth Cuvée 90 21.0
Caroline

province region_1 region_2

Sicily &

Sardinia Etna NaN
Douro NaN NaN
Alsace Alsace NaN
Alsace Alsace NaN

In Python, we can access the property of an object by accessing it as an attribute. A

book object, for example, might have a title property, which we can access by

calling book.title . Columns in a pandas DataFrame work in much the same way.

Hence to access the country property of reviews we can use:

reviews.country

0 Italy
1 Portugal
129969 France
129970 France
Name: country, Length:

129971, dtype: object

If we have a Python dictionary, we can access its values using the indexing ( [] )

operator. We can do the same with columns in a DataFrame:

reviews|[ 'country' ]

1



0 Italy

1 Portugal
129969 France
129970 France

Name: country, Length: 129971, dtype: object

These are the two ways of selecting a specific Series out of a DataFrame. Neither of
them is more or less syntactically valid than the other, but the indexing operator []
does have the advantage that it can handle column names with reserved characters
in them (e.g. if we had a country providence column, reviews.country
providence wouldn't work).

Doesn't a pandas Series look kind of like a fancy dictionary? It pretty much is, so it's
no surprise that, to drill down to a single specific value, we need only use the
indexing operator [] once more:

reviews|[ 'country'][0]

'Italy’

Indexing in pandas

The indexing operator and attribute selection are nice because they work just like
they do in the rest of the Python ecosystem. As a novice, this makes them easy to
pick up and use. However, pandas has its own accessor operators, loc and iloc .
For more advanced operations, these are the ones you're supposed to be using.

Index-based selection

Pandas indexing works in one of two paradigms. The first is index-based selection:
selecting data based on its numerical position in the data. iloc follows this
paradigm.

To select the first row of data in a DataFrame, we may use the following:

reviews.iloc[0]

country Italy
description Aromas include tropical fruit, broom, brimston...
variety White Blend
winery Nicosia

Name: 0, Length: 13, dtype: object
Both loc and iloc are row-first, column-second. This is the opposite of what we

do in native Python, which is column-first, row-second.

This means that it's marginally easier to retrieve rows, and marginally harder to get
retrieve columns. To get a column with iloc , we can do the following:



reviews.iloc[:, 0]

0 Italy
1 Portugal
129969 France
129970 France

Name: country, Length: 129971, dtype: object

On its own, the : operator, which also comes from native Python, means
"everything". When combined with other selectors, however, it can be used to
indicate a range of values. For example, to select the country column from just the
first, second, and third row, we would do:

reviews.iloc[:3, 0]

0 Italy
1 Portugal
2 Us

Name: country, dtype: object

Or, to select just the second and third entries, we would do:

reviews.iloc[1l:3, 0]

1 Portugal
2 Us
Name: country, dtype: object

It's also possible to pass a list:

reviews.iloc[[0, 1, 2], 0]

0 Italy
1 Portugal
2 Uus

Name: country, dtype: object

Finally, it's worth knowing that negative numbers can be used in selection. This will
start counting forwards from the end of the values. So for example here are the last
five elements of the dataset.

reviews.iloc[-5:]



country description designation points price province region_1 region_2

Notes of
honeysuckle Brauneberger
and Juffer-

129966 Germany 90 28.0 Mosel NaN NaN

cantaloupe Sonnenuhr
sweeten Spatlese
th...

Citation is
given as
129967 us much as a NaN 90 75.0 Oregon Oregon
decade of
bottl...

Well-
drained

Oregon
Other

129968 France gravel soil Kritt 90 30.0 Alsace Alsace NaN

gives this
wine its c...

A dry style
of Pinot

129969 France NaN 90 32.0 Alsace Alsace NaN

Gris, this is
crisp with ...

Big, rich
and off-dry, Lieu-dit

129970 France thisis  Harth Cuvée 90 21.0 Alsace Alsace NaN

powered by Caroline
inte...

Label-based selection

The second paradigm for attribute selection is the one followed by the 1loc
operator: label-based selection. In this paradigm, it's the data index value, not its
position, which matters.

For example, to get the first entry in reviews , we would now do the following:

reviews.loc[0, 'country']

'Italy’

iloc is conceptually simpler than loc because it ignores the dataset's indices.
When we use iloc we treat the dataset like a big matrix (a list of lists), one that we
have to index into by position. loc , by contrast, uses the information in the indices
to do its work. Since your dataset usually has meaningful indices, it's usually easier
to do things using loc instead. For example, here's one operation that's much
easier using loc :

reviews.loc[:, ['taster name', 'taster twitter handle', 'points']]



taster_name taster_twitter_handle points

0 Kerin O'Keefe @kerinokeefe 87
1 Roger Voss @vossroger 87
129969 Roger Voss @vossroger 90
129970 Roger Voss @vossroger 90

129971 rows x 3 columns

Choosing between loc and iloc

When choosing or transitioning between loc and iloc , thereis one "gotcha"
worth keeping in mind, which is that the two methods use slightly different indexing
schemes.

iloc uses the Python stdlib indexing scheme, where the first element of the range
is included and the last one excluded. So 0:10 will select entries 0,...,9 . loc,
meanwhile, indexes inclusively. So 0:10 will select entries 0,...,10 .

Why the change? Remember that loc can index any stdlib type: strings, for example.
If we have a DataFrame with index values Apples, ..., Potatoes, ..., and
we want to select "all the alphabetical fruit choices between Apples and Potatoes",
then it's a lot more convenient to index df.loc['Apples': 'Potatoes'] thanitis
to index something like df.loc['Apples', 'Potatoet'] (t coming after s in
the alphabet).

This is particularly confusing when the DataFrame index is a simple numerical list,
eg. 0,...,1000 . Inthiscase df.iloc[0:1000] will return 1000 entries, while
df.loc[0:1000] return 1001 of them! To get 1000 elements using loc , you will
need to go one lower and ask for df.loc[0:999] .

Otherwise, the semantics of using loc are the same as those for iloc .

Manipulating the index

Label-based selection derives its power from the labels in the index. Critically, the
index we use is not immutable. We can manipulate the index in any way we see fit.

The set_index() method can be used to do the job. Here is what happens when
we set_index tothe title field:

reviews.set index("title")



country description designation points price province region_1

title
Aromas
. . include
Nicosia 2013 . R ..
Vulka Bianco Italy troplc.al YUIka 87 NaN SIC'I.V.& Etna
fruit, Bianco Sardinia
(Etna)
broom,
brimston...
Quinta dos This is ripe
Avidagos 2011 and fruity, a .
Avidagos Red Portugal wine that is Avidagos 87 15.0 Douro NaN
(Douro) smooth...
Domaine Marcel e sjcyle
Deiss 2012 el Pt
. . France Gris, thisis NaN 90 32.0 Alsace Alsace
Pinot Gris crisp with
(Alsace) P
Domaine Bia. rich
Schoffit 2012 9 o
Lieu-dit Harth and off-dry, Lieu-dit
A . France thisis Harth Cuvée 90 210 Alsace Alsace
Cuvée Caroline .
. powered by Caroline
Gewurztraminer inte

(Alsace)

129971 rows x 12 columns

This is useful if you can come up with an index for the dataset which is better than
the current one.

Conditional selection

So far we've been indexing various strides of data, using structural properties of the
DataFrame itself. To do interesting things with the data, however, we often need to
ask questions based on conditions.

For example, suppose that we're interested specifically in better-than-average wines
produced in Italy.

We can start by checking if each wine is Italian or not:

reviews.country == 'Italy'
0 True
1 False

129969 False
129970 False
Name: country, Length: 129971, dtype: bool

rec



This operation produced a Series of True / False booleans based on the

country of each record. This result can then be used inside of loc to select the

relevant data:

reviews.loc[reviews.country ==

129961

129962

Italy

Italy

Italy

Italy

country description

Aromas
include
tropical
fruit,
broom,
brimston...

Here's a
bright,
informal red
that opens
with ...

Intense
aromas of
wild cherry,
baking
spice, t...

Blackberry,
cassis,
grilled herb
and toasted
a...

19540 rows x 13 columns

Vulka
Bianco

Belsito

NaN

Sagana
Tenuta San
Giacomo

'Italy']

designation points

87

87

90

90

price

NaN

16.0

30.0

40.0

province

Sicily &
Sardinia

Sicily &
Sardinia

Sicily &
Sardinia

Sicily &
Sardinia

region_1

Etna

Vittoria

Sicilia

Sicilia

region_2

NaN

NaN

NaN

NaN

This DataFrame has ~20,000 rows. The original had ~130,000. That means that
around 15% of wines originate from Italy.

We also wanted to know which ones are better than average. Wines are reviewed on

a 80-to-100 point scale, so this could mean wines that accrued at least 90 points.

We can use the ampersand ( & ) to bring the two questions together:

reviews.loc|[ (reviews.country ==

'Italy') & (reviews.points >= 90)]

t



120

130

129961

129962

country

Italy

ltaly

Italy

Italy

description

Slightly
backward,
particularly
given the
vint...

At the first
it was quite
muted and
subdued,
b...

Intense
aromas of
wild cherry,
baking
spice, t...

Blackberry,
cassis,
grilled herb
and toasted
a...

6648 rows x 13 columns

designation points

Bricco
Rocche
Prapé

Bricco
Rocche
Brunate

NaN

Sagana
Tenuta San
Giacomo

92

91

90

90

price

70.0

70.0

30.0

40.0

province

Piedmont

Piedmont

Sicily &
Sardinia

Sicily &
Sardinia

region_1

Barolo

Barolo

Sicilia

Sicilia

region_2

NaN

NaN

NaN

NaN

Suppose we'll buy any wine that's made in Italy or which is rated above average. For
this we use a pipe ( | ):

reviews.loc[ (reviews.country ==

'Italy')

(reviews.points >= 90)]

1



country description designation points price province region_1 region_2 1

Aromas

include

tropical Vulka Sicily &
fruit, Bianco 87 NaN Sardinia

broom,

brimston...

(0] Italy Etna NaN

Here's a
bright,
6 Italy informal red Belsito 87 16.0
that opens
with ...

Sicily &

Sardinia Vittoria NaN

A dry style
of Pinot

129969 France Gris, thisis NaN 90 32.0 Alsace Alsace NaN
crisp with

Big, rich
and off-dry, Lieu-dit
129970 France thisis Harth Cuvée 90 210 Alsace Alsace NaN
powered by Caroline
inte...

61937 rows x 13 columns

Pandas comes with a few built-in conditional selectors, two of which we will highlight
here.

The firstis isin . isin is lets you select data whose value "is in" a list of values.
For example, here's how we can use it to select wines only from Italy or France:

reviews.loc[reviews.country.isin([ 'Italy', 'France'])]



country description designation points price province region_1 region_2 1

Aromas

include

tropical Vulka Sicily &
fruit, Bianco 87 NaN Sardinia

broom,

brimston...

(0] Italy Etna NaN

Here's a
bright,
6 Italy informal red Belsito 87 16.0
that opens
with ...

Sicily &

Sardinia Vittoria NaN

A dry style
of Pinot

129969 France Gris, thisis NaN 90 32.0 Alsace Alsace NaN
crisp with

Big, rich
and off-dry, Lieu-dit
129970 France thisis Harth Cuvée 90 210 Alsace Alsace NaN
powered by Caroline
inte...

41633 rows x 13 columns

The second is isnull (and its companion notnull ). These methods let you
highlight values which are (or are not) empty ( NaN ). For example, to filter out wines
lacking a price tag in the dataset, here's what we would do:

reviews.loc[reviews.price.notnull() ]



country description designation points price province region_1 region_2

This is ripe
and fruity, a
wine that is

smooth...

1 Portugal Avidagos 87 15.0 Douro NaN NaN

Tart and
snappy, the
2 us flavors of NaN 87 14.0 Oregon
lime flesh
and...

Willamette Willamette
Valley Valley

A dry style
of Pinot

129969 France Gris, thisis NaN 90 32.0 Alsace Alsace NaN
crisp with

Big, rich
and off-dry, Lieu-dit
129970 France thisis Harth Cuvée 90 210 Alsace Alsace NaN
powered by Caroline
inte...

120975 rows x 13 columns

Assigning data

Going the other way, assigning data to a DataFrame is easy. You can assign either a
constant value:

reviews|[ 'critic'] = 'everyone'
reviews|[ 'critic']

0 everyone
1 everyone
129969 everyone
129970 everyone
Name: critic, Length: 129971, dtype: object

Or with an iterable of values:

reviews|[ 'index backwards'] = range(len(reviews), 0, -1)
reviews|[ 'index backwards']

0 129971
1 129970
129969 2
129970 1

Name: index backwards, Length: 129971, dtype: int64



Your turn

If you haven't started the exercise, you can get started here.

Have questions or comments? Visit the course discussion forum to chat with other
learners.


https://www.kaggle.com/kernels/fork/587910
https://www.kaggle.com/learn/pandas/discussion

