Introduction

In this micro-course, you'll learn all about pandas, the most popular Python library for data analysis.

Along the way, you'll complete several hands-on exercises with real-world data. We recommend that you work on the exercises while reading
the corresponding tutorials.

To start the first exercise, please click here.

In this tutorial, you will learn how to create your own data, along with how to work with data that already exists.

Getting started

To use pandas, you'll typically start with the following line of code.

import pandas as pd

Creating data

There are two core objects in pandas: the DataFrame and the Series.

DataFrame

A DataFrame is a table. It contains an array of individual entries, each of which has a certain value. Each entry corresponds to a row (or record)
and a column.

For example, consider the following simple DataFrame:

pd.DataFrame({'Yes': [50, 21], 'No': [131, 2]})

.dataframe tbody tr th {
vertical-align: top;

.dataframe thead th {
text-align: right;

Yes No

In this example, the "0, No" entry has the value of 131. The "0, Yes" entry has a value of 50, and so on.

DataFrame entries are not limited to integers. For instance, here's a DataFrame whose values are strings:

pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']})
.dataframe tbody tr th {

vertical-align: top;
}
.dataframe thead th {

text-align: right;
}

Bob Sue

0 | liked it. Pretty good.
1 It was awful. Bland.

We are using the pd.pataFrame() constructor to generate these DataFrame objects. The syntax for declaring a new one is a dictionary whose keys are the column names
(Bob and sue in this example), and whose values are a list of entries. This is the standard way of constructing a new DataFrame, and the one you are most likely to
encounter.

The dictionary-list constructor assigns values to the column labels, but just uses an ascending count from 0 (0, 1, 2, 3, ...) for the row labels. Sometimes this is OK, but
oftentimes we will want to assign these labels ourselves.

https://pandas.pydata.org/
https://www.kaggle.com/kernels/fork/587970

The list of row labels used in a DataFrame is known as an Index. We can assign values to it by using an index parameter in our constructor:

pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'],
'Sue': ['Pretty good.', 'Bland.']},
index=['Product A', 'Product B'])

.dataframe tbody tr th {
vertical-align: top;

.dataframe thead th {
text-align: right;

Bob Sue
Product A I liked it. Pretty good.

Product B It was awful. Bland.

Series

A Series, by contrast, is a sequence of data values. If a DataFrame is a table, a Series is a list. And in fact you can create one with nothing more than a list:

pd.Series([1, 2, 3, 4, 5])

B W N e o
g W N e

dtype: int64

A Series is, in essence, a single column of a DataFrame. So you can assign row labels to the Series the same way as before, using an index parameter. However, a Series
does not have a column name, it only has one overall name :

pd.Series([30, 35, 40], index=['2015 Sales', '2016 Sales', '2017 Sales'], name='Product A')

2015 sales 30
2016 Sales 35
2017 sales 40
Name: Product A, dtype: int64

The Series and the DataFrame are intimately related. It's helpful to think of a DataFrame as actually being just a bunch of Series "glued together". We'll see more of this in
the next section of this tutorial.

Reading data files

Being able to create a DataFrame or Series by hand is handy. But, most of the time, we won't actually be creating our own data by hand. Instead, we'll be working with data
that already exists.

Data can be stored in any of a number of different forms and formats. By far the most basic of these is the humble CSV file. When you open a CSV file you get something

that looks like this:

Product A,Product B,Product C,
30,21,9,
35,34,1,
41,11,11

So a CSV file is a table of values separated by commas. Hence the name: "Comma-Separated Values", or CSV.

Let's now set aside our toy datasets and see what a real dataset looks like when we read it into a DataFrame. We'll use the pd.read_csv() function to read the data into a
DataFrame. This goes thusly:

wine_reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv")

We can use the shape attribute to check how large the resulting DataFrame is:

wine_reviews.shape

(129971, 14)

So our new DataFrame has 130,000 records split across 14 different columns. That's almost 2 million entries!

We can examine the contents of the resultant DataFrame using the head() command, which grabs the first five rows:

wine_reviews.head()

.dataframe tbody tr th {
vertical-align: top;

.dataframe thead th {
text-align: right;

}
Unnamed:
country
0
0 0 Italy
1 1 Portugal
2 2 us
3 3 us
4 4 us

description

Aromas
include
tropical
fruit,
broom,
brimston...

This is ripe
and fruity, a
wine that is
smooth...

Tart and
snappy, the
flavors of
lime flesh
and...

Pineapple
rind, lemon
pith and
orange
blossom ...

Much like
the regular
bottling
from 2012,
this...

designation

Vulka
Bianco

Avidagos

NaN

Reserve
Late Harvest

Vintner's
Reserve
Wild Child
Block

points

87

87

87

87

87

price

NaN

15.0

14.0

13.0

65.0

province

Sicily &
Sardinia

Douro

Oregon

Michigan

Oregon

region_1

Etna

NaN

Willamette
Valley

Lake
Michigan
Shore

Willamette
Valley

region_2

NaN

NaN

Willamette
Valley

NaN

Willamette
Valley

taster_name

Kerin
O'Keefe

Roger Voss

Paul Gregutt

Alexander
Peartree

Paul Gregutt

taster_twitter_hai

@kerinokeefe

@vossroger

@paulgwine

NaN

@paulgwine

The pd.read_csv() function is well-endowed, with over 30 optional parameters you can specify. For example, you can see in this dataset that the CSV file has a built-in
index, which pandas did not pick up on automatically. To make pandas use that column for the index (instead of creating a new one from scratch), we can specify an

index_col.

wine reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index col=0)

wine_reviews.head()

.dataframe tbody tr th {

vertical-align: top;

.dataframe thead th {
text-align: right;

| country
0 Italy

1 Portugal
2 us

3 us

4 us

description

Aromas
include
tropical
fruit,
broom,
brimston...

This is ripe

and fruity, a
wine that is
smooth...

Tart and
snappy, the
flavors of
lime flesh
and...

Pineapple
rind, lemon
pith and
orange
blossom ...

Much like
the regular
bottling
from 2012,
this...

Your turn

designation

Vulka

Bianco

Avidagos

NaN

Reserve
Late Harvest

Vintner's
Reserve
Wild Child
Block

points

87

87

87

87

87

If you haven't started the exercise, you can get started here.

Have questions or comments? Visit the course discussion forum to chat with other learners.

price

NaN

15.0

14.0

13.0

province

Sicily &
Sardinia

Douro

Oregon

Michigan

Oregon

region_1

Etna

NaN

Willamette
Valley

Lake
Michigan
Shore

Willamette
Valley

region_2

NaN

NaN

Willamette
Valley

NaN

Willamette
Valley

taster_name

Kerin
O'Keefe

Roger Voss

Paul Gregutt

Alexander
Peartree

Paul Gregutt

taster_twitter_handle

@kerinokeefe

@vossroger

@paulgwine

NaN

@paulgwine

Nicosie
2013V
Bianco
(Etna)

Quinta
Avidag
2011
Avidag
Red
(Douro

Rainstc
2013 P
Gris

(Willarr
Valley)

St. Julie
2013
Reserv
Late
Harves
Riesliny

Sweet
Cheeks
2012
Vintnel
Reserv
Wwild
Child...

https://www.kaggle.com/kernels/fork/587970
https://www.kaggle.com/learn/pandas/discussion

	Introduction
	Getting started
	Creating data
	DataFrame
	Series

	Reading data files
	Your turn

