
 

In this example, the "0, No" entry has the value of 131. The "0, Yes" entry has a value of 50, and so on.

DataFrame entries are not limited to integers. For instance, here's a DataFrame whose values are strings:

 

Bob Sue

0 I liked it. Pretty good.

1 It was awful. Bland.

 

We are using the pd.DataFrame()  constructor to generate these DataFrame objects. The syntax for declaring a new one is a dictionary whose keys are the column names 
( Bob  and Sue  in this example), and whose values are a list of entries. This is the standard way of constructing a new DataFrame, and the one you are most likely to 
encounter.

The dictionary-list constructor assigns values to the column labels, but just uses an ascending count from 0 (0, 1, 2, 3, ...) for the row labels. Sometimes this is OK, but 
oftentimes we will want to assign these labels ourselves.

Yes No

0 50 131

1 21 2

Introduction  
In this micro-course, you'll learn all about pandas, the most popular Python library for data analysis.

Along the way, you'll complete several hands-on exercises with real-world data.  We recommend that you work on the exercises while reading 
the corresponding tutorials.  

To start the first exercise, please click here.

In this tutorial, you will learn how to create your own data, along with how to work with data that already exists.  

Getting started  
To use pandas, you'll typically start with the following line of code.

Creating data  
There are two core objects in pandas: the DataFrame and the Series.

DataFrame  

A DataFrame is a table. It contains an array of individual entries, each of which has a certain value. Each entry corresponds to a row (or record) 
and a column.

For example, consider the following simple DataFrame:

 

import pandas as pd

pd.DataFrame({'Yes': [50, 21], 'No': [131, 2]})

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Bland.']})

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

https://pandas.pydata.org/
https://www.kaggle.com/kernels/fork/587970


The list of row labels used in a DataFrame is known as an Index. We can assign values to it by using an index  parameter in our constructor:

 

Bob Sue

Product A I liked it. Pretty good.

Product B It was awful. Bland.

 

A Series, by contrast, is a sequence of data values. If a DataFrame is a table, a Series is a list. And in fact you can create one with nothing more than a list:

 

 

A Series is, in essence, a single column of a DataFrame. So you can assign row labels to the Series the same way as before, using an index  parameter. However, a Series 
does not have a column name, it only has one overall name :

 

 

The Series and the DataFrame are intimately related. It's helpful to think of a DataFrame as actually being just a bunch of Series "glued together". We'll see more of this in 
the next section of this tutorial.

Being able to create a DataFrame or Series by hand is handy. But, most of the time, we won't actually be creating our own data by hand. Instead, we'll be working with data 
that already exists.

Data can be stored in any of a number of different forms and formats. By far the most basic of these is the humble CSV file. When you open a CSV file you get something 
that looks like this:

So a CSV file is a table of values separated by commas. Hence the name: "Comma-Separated Values", or CSV.

Let's now set aside our toy datasets and see what a real dataset looks like when we read it into a DataFrame. We'll use the pd.read_csv()  function to read the data into a 
DataFrame. This goes thusly:

Series  

Reading data files  

pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 
              'Sue': ['Pretty good.', 'Bland.']},
             index=['Product A', 'Product B'])

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

pd.Series([1, 2, 3, 4, 5])

0    1
1    2
2    3
3    4
4    5
dtype: int64

pd.Series([30, 35, 40], index=['2015 Sales', '2016 Sales', '2017 Sales'], name='Product A')

2015 Sales    30
2016 Sales    35
2017 Sales    40
Name: Product A, dtype: int64

Product A,Product B,Product C,
30,21,9,
35,34,1,
41,11,11

wine_reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv")



We can use the shape  attribute to check how large the resulting DataFrame is:

 

 

So our new DataFrame has 130,000 records split across 14 different columns. That's almost 2 million entries!

We can examine the contents of the resultant DataFrame using the head()  command, which grabs the first five rows:

 

Unnamed:
0

country description designation points price province region_1 region_2 taster_name taster_twitter_handle

0 0 Italy

Aromas
include
tropical
fruit,
broom,
brimston...

Vulkà
Bianco

87 NaN
Sicily &
Sardinia

Etna NaN
Kerin
O’Keefe

@kerinokeefe

1 1 Portugal

This is ripe
and fruity, a
wine that is
smooth...

Avidagos 87 15.0 Douro NaN NaN Roger Voss @vossroger

2 2 US

Tart and
snappy, the
flavors of
lime flesh
and...

NaN 87 14.0 Oregon
Willamette
Valley

Willamette
Valley

Paul Gregutt @paulgwine

3 3 US

Pineapple
rind, lemon
pith and
orange
blossom ...

Reserve
Late Harvest

87 13.0 Michigan
Lake
Michigan
Shore

NaN
Alexander
Peartree

NaN

4 4 US

Much like
the regular
bottling
from 2012,
this...

Vintner's
Reserve
Wild Child
Block

87 65.0 Oregon
Willamette
Valley

Willamette
Valley

Paul Gregutt @paulgwine

 

The pd.read_csv()  function is well-endowed, with over 30 optional parameters you can specify. For example, you can see in this dataset that the CSV file has a built-in 
index, which pandas did not pick up on automatically. To make pandas use that column for the index (instead of creating a new one from scratch), we can specify an 
index_col .

 

wine_reviews.shape

(129971, 14)

wine_reviews.head()

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

wine_reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0)
wine_reviews.head()



country description designation points price province region_1 region_2 taster_name taster_twitter_handle title

0 Italy

Aromas
include
tropical
fruit,
broom,
brimston...

Vulkà
Bianco

87 NaN
Sicily &
Sardinia

Etna NaN
Kerin
O’Keefe

@kerinokeefe

Nicosia
2013 Vulkà
Bianco
(Etna)

1 Portugal

This is ripe
and fruity, a
wine that is
smooth...

Avidagos 87 15.0 Douro NaN NaN Roger Voss @vossroger

Quinta dos
Avidagos
2011
Avidagos
Red
(Douro)

2 US

Tart and
snappy, the
flavors of
lime flesh
and...

NaN 87 14.0 Oregon
Willamette
Valley

Willamette
Valley

Paul Gregutt @paulgwine

Rainstorm
2013 Pinot
Gris
(Willamette
Valley)

3 US

Pineapple
rind, lemon
pith and
orange
blossom ...

Reserve
Late Harvest

87 13.0 Michigan
Lake
Michigan
Shore

NaN
Alexander
Peartree

NaN

St. Julian
2013
Reserve
Late
Harvest
Riesling ...

4 US

Much like
the regular
bottling
from 2012,
this...

Vintner's
Reserve
Wild Child
Block

87 65.0 Oregon
Willamette
Valley

Willamette
Valley

Paul Gregutt @paulgwine

Sweet
Cheeks
2012
Vintner's
Reserve
Wild
Child...

 

If you haven't started the exercise, you can get started here.

 

Have questions or comments? Visit the course discussion forum to chat with other learners.

Your turn  

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}

https://www.kaggle.com/kernels/fork/587970
https://www.kaggle.com/learn/pandas/discussion

	Introduction
	Getting started
	Creating data
	DataFrame
	Series

	Reading data files
	Your turn

